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Abstract

Learning inherently interpretable policies is a central challenge in the path to
developing autonomous agents that humans can trust. We argue for the use of
policies that are piecewise-linear. We carefully study to what extent they can re-
tain the interpretable properties of linear policies while performing competitively
with neural baselines. In particular, we propose the HyperCombinator (HC), a
piecewise-linear neural architecture expressing a policy with a controllably small
number of sub-policies. Each sub-policy is linear with respect to interpretable
features, shedding light on the agent’s decision process without needing an
additional explanation model. We evaluate HC policies in control and navigation
experiments, visualize the improved interpretability of the agent and highlight
its trade-off with performance.

1 Introduction

Machine learning models are becoming increasingly opaque decision makers. They are untrustwor-
thy in many situations, either because their predictions are unstable [1, 2], fail to generalize [3],
the actual sub-policies differ from the expected one [4, 5], or because one cannot easily extract
the logic behind their decisions. In our quest for ever improving performance, the transparency
and explainability of AI models might soon become an indispensable component of their democ-
ratization, amid a growing oversight by regulatory bodies [6, 7, 8, 9]. But interpretability is also
a fascinating scientific topic in itself, giving us the opportunity to strengthen our understanding
of our models and their effects. Therefore, it is important to systematically explore the methods
that let us interpret machine learning models. Deep reinforcement learning (DRL) is a particularly
interesting domain in which to study interpretability. In fact, a precise description of how policies
interact with an environment can inform other algorithms designed to improve the fairness,
accountability, or transparency of the deployed model [10]. Transparent policies could also help
better diagnose the agent’s interactions, which can be helpful if it appears to malfunction.
In this work, we examine the viability of piecewise-linear policies as a beneficial compromise between
interpretability and performance in DRL. Given that policies expressing a few linear sub-policies
were already shown to be performant [11], we focus on extending the analysis of piecewise-linear
policies in the context of interpretability. To that end, we propose the HyperCombinator, a neural
architecture that parametrizes a piecewise-linear policy with a controllably small number of linear
sub-policies. The HC agent, which can be thought of as a mixture of linear experts [12], selects
a linear sub-policy at every interaction with the environment, an important property missing from
previous works. Therefore, for a given choice of sub-policy, it becomes possible to transparently
analyze the computation leading to each decision.
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Our contributions are the following: (1) we characterize properties that an interpretable piecewise-
linear policy should ideally satisfy, (2) we present the HyperCombinator, an actor architecture
that implements a piecewise-linear policy with a specifiable number of linear sub-policies and
compatible with most RL algorithms, (3) we characterize the interpretability properties inherited
by HC, (4) we extensively evaluate the model on control and navigation tasks and observe a
sustained performance of the model despite its greatly reduced expressivity. In addition, (5) we
leverage the two levels of interpretability of HC to propose two visualizations. The first one
lists the different ways the policy can react to an input by cataloging exhaustively each linear
sub-policy and its coefficients into a table. The second condenses the sequence of decisions into
the sequence of sub-policies used, surfacing the temporal abstractions emerging from the task.

2 From linear to piecewise-linear policies

This paper is set in the context of DRL, about which we recall the general notions in Appendix A.
We aim to achieve functional interpretability by reducing the size of the class that the policy
belongs to [13]. We start from linear policies. We write them as π̃(x) = ⟨θ, x⟩, where θ designates
the linear coefficients, the input x is assumed interpretable, and ⟨A, b⟩ is the dot product (resp.
matrix-vector product) between A and b if A is a vector (resp. a matrix) and b a vector. Some
environments require to pass π̃(x) through a non-linearity µ to match the action space, such
that the final policy is π = µ ◦ π̃. Linear policies have several desirable interpretability properties,
such as being summarizable by their coefficients, or having each coefficient explicitly quantify the
influence of a given feature and expressing the same valid explanation for all inputs. However,
their flexibility is generally not sufficient to handle complex tasks [14]. We therefore consider the
larger class of piecewise-linear policies π̃ : X → A with:

π̃(x) =


⟨θω0 , x⟩ if x ∈ ω0
⟨θω1 , x⟩ if x ∈ ω1
. . .

⟨θωK−1 , x⟩ if x ∈ ωK−1

, (1)

where K is the number of linear sub-functions, and where the partition of the input space
Ω = {ω0, . . . , ωK−1}, the set of linear coefficients θ = {θω, ω ∈ Ω} and the function a : X → Ω
mapping an input to the corresponding subset ω describe π̃. Therefore, π̃ is locally linear, and
some interpretability properties of linear policies carry over. However, both the value of K and
the complexity of Ω and a influence the interpretability of π̃.
MLPs using only linear layers (including convolutional or layer normalization layers) and ReLU
activations [15, 16] already offer a piecewise-linear parametrization of policies [17] learnable with
gradient descent. Yet, there is no simple way to control the number of linear sub-policies that
they express, impeding the interpretability of the policy. This in turn implies that each sub-policy
is only applied to few inputs, limiting the generalization of the explanations provided by the linear
coefficients. The rightmost plot of Fig. 1 illustrates the induced partition of an MLP, a concept
more precisely analyzed in [18]. Restricting the number of linear sub-functions while maintaining
a high level of performance and interpretability remains a major challenge, that we explore next.

3 Methods

We begin by formulating properties that a deployed, interpretable policy should ideally satisfy.
(P1) Sub-policy transparency: input-to-output sub-policy computation is easy-to-understand.
(P2) Assignation transparency: input to sub-policy choice computation is easy-to-understand.
(P3) Separation: the policy uses a single sub-policy at each interaction (training and evaluation).
(P4) Counterfactual reasoning: we can compare the sub-policy taken to the other possibilities.
(P5) Generalization: the sub-policies generalize to similar inputs.
(P6) Causality: we want to justify the causal influence of each feature w.r.t. the task success.
Given the subjective nature of interpretability, a single definition might not be sufficient [10]. To
satisfy as many of these properties as possible, we design the Hypercombinator, a piecewise-linear
neural architecture with a small, controllable number of linear sub-functions.
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Figure 1: (Left) Proposed actor architecture. Layers are colored in yellow, vectors in blue. (Right)
Intuition of the partition of a 2D space into linear regions by different models. Each polygon
corresponds to a distinct linear region, and each color to a set of unique linear coefficients.

3.1 Proposed policy architecture

Our starting policy π̃ is expressed by an MLP, realizing a piecewise-linear function with respect to
an input x ∈ Rn assumed interpretable. Following Sec. 2, π̃(x) can be decomposed as ⟨θa(x), x⟩,
where a : Rn → Ω assigns an input x to a subset of the partition Ω induced by π̃.

Parametrization We focus on reducing the number of sub-policies while retaining the complexity
of Ω. We model θ as a linear function θ̂ : Ω → Rn. Secondly, we model a explicitly by an MLP
followed by a Gumbel-Softmax layer [19, 20], and refer to the composition of both as a Gumbel
network â. The Gumbel-Softmax is typically used to continuously learn a categorical variable.
Here, it predicts to which sub-policy should an input x be mapped. Furthermore, we use the
straight-through estimator [21] to force â to produce strict assignations, i.e. one-hot encodings
in the forward pass while being trainable with gradient descent. Any activation function in the
Gumbel network will lead to a piecewise-linear function thanks to the straight-through estimator.
This architecture is the HyperCombinator, illustrated in Fig. 1 along with the partition it induces.
This formulation is advantageous for several reasons. First, the MLP preceding the Gumbel-
Softmax induces the partition of the input space which π inherits, thus retaining some of the
predictive flexibility of NNs. Second, we explicitly control the number of unique sub-policies
of π through the dimension dG of the Gumbel-Softmax layer. Moreover, the Gumbel network
â is piecewise-constant thanks to the straight-through estimator. Therefore, π interacts with
the environment only through one of the dG sub-policies, on the contrary to previous work [11].
Finally, we note that HC policies are compatible with any RL algorithm including an actor, as
long as there are no competing assumptions on the structure of the policy. We provide further
details regarding the implementation of the HyperCombinator in Appendix D.1.
HC policies are usually not continuous at the border between linear regions, unlike MLPs. We
do not find to be a problem for stability in practice (Appendix D.7). Moreover, reducing the
width or the height of the NN is an alternative and more direct way to reduce the number of
unique coefficients. Yet, the number of linear sub-functions grows very quickly with the size of
the architecture, both theoretically and empirically (see Appendix B for an in-depth analysis).

3.2 Interpretability characterization of the HyperCombinator architecture

HC policies satisfy several structural properties. First, π̃ is linear in the interpretable input x
(P1), giving transparent access to the computation of the decision, given the sub-policy. Second,
the policy is piecewise-linear not only during evaluation but also during training thanks to the
use of the straight-through estimator, which guarantees that our approach stays interpretable for
all the environment interactions (P3). Third, the number of unique sub-policies of the policy
is set by the hyperparameter dG (P4). The few sub-policies are thus in practice constrained to
generalize across a wide range of states, which implies P5. This is not true for MLPs, due to
their huge number of linear regions and unique coefficients. MLPs additionally do not satisfy P4.
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Our approach is locally interpretable since the explanations of a sub-policy are limited to its
domain of application; our approach does not satisfy P2. The HyperCombinator also does not
provide feature importance or any notion of causal explanations and does not satisfy P6. Indeed,
just like MLPs, a feature xi of x can be involved in the computation of all the coefficients θ̂(â(x))
and simultaneously have its linear coefficient θ̂(â(x))i be 0. In other words, our approach can be
understood as interpretable conditioned on the choice of a sub-policy.

Two levels of interpretability In summary, a HC policy can perhaps best be understood as
two consecutive modules, each corresponding to a different level of interpretability. The first
module selects a linear sub-policy given an input, while the second retrieves the linear coefficients
of the selected sub-policy and applies them to the input. The second module provides the exact
linear coefficients that are used by the policy to interact with the environment, quantifying
the influence of each interpretable feature on the chosen action (low-level interpretability).
Simultaneously, one can observe the sequence of choices of sub-policies made by an agent in
order to analyze its behavior, thanks to the first module of π̃. The forced re-use of sub-policies
leads to the emergence of cycles and temporal abstractions highlighting how the agent solves
the task (high-level interpretability). We illustrate the complementary low-level and high-level
interpretability of HC in Fig. 1 (left), using respectively purple and green.

4 Experiments

4.1 Control

We evaluate how well HC policies can control proprioceptive variables such as the joints of a
robot through the DeepMind Control Suite benchmark [22]. We aim to (1) ensure that the HC
architecture can be trained to solve control tasks, (2) investigate the improved interpretability
of the agent and (3) compare the performance of HC actors to their baseline algorithm using
their usual neural policy. We combine SAC [23] with a HC actor. In other terms, π̃ is linear
w.r.t. the interpretable proprioceptive features (Sec. A.1). We detail the chosen hyperparameters
in Appendix D. We consider a variant of HC with 8 sub-policies (HC8) as well as one with 64
(HC64), more expressive but less interpretable due to the higher number of sub-policies.

Performance We perform an in-depth experimental analysis of the performance of piecewise-
linear policies in DM Control, extending previous work [11], and present the results in Fig. 6. HC
policies approach or match the performance of SAC in most environments. This limited drop in
performance is remarkable in particular for HC8, which performs at most 3% worse than SAC in
57% of the tested environments (HC64: 78%) despite only having access to 8 linear sub-policies.
We further analyze the performance of HC over all environments, as well as improved sample
efficiency in select hard tasks in Appendix D.

Interpretability The low-level interpretability of HC actors, thanks to the linearity of the
sub-policies, gives insights about the influence of the features in each decision. We can visualize
the linear coefficients characterizing all the sub-policies of π̃ via a matrix view (Fig. 2, right). In
the Cartpole swingup environment, we can precisely analyze how some sub-policies swing the
cartpole up while others stabilize the cartpole once in an approximately straight position. We
defer the precise analysis of this result to Appendix D.8. The discrete bottleneck introduced
by the Gumbel network also lets us visualize the high-level interpretability of HC through the
sequence of chosen sub-policies. We illustrate the emergence of a time-extended behavior in
Fig. 2 (left), where the cyclical nature of the movement of a cheetah running can be observed in
the sequence of sub-policies chosen by HC8. In contrast, SAC reuses the same linear coefficients
in average 50 times over a similar 1000 timestep trajectory on Cheetah run, in spite of the
cyclicity of the task (see further details in Appendix C).

4.2 Navigation

We want to discover if (1) HC actors can solve hard exploration mazes [24] when combined with
dedicated algorithms and if (2) using HC actors in mazes can elicit temporal abstractions in
the sub-policy sequence, similar to the control setting. The agent, a quadruped which state is
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Figure 2: (Left) Sub-policy sequence, 200 first timesteps of HC8 on Cheetah run. A temporal
abstraction emerges as HC8 reuses the same sub-policy for several timesteps before switching to
a new one in a cyclical fashion. (Right) All sub-policies coefficients, for one action of π̃. We
observe the similarities of sub-policies (2 and 3 have same-sign coefficients for features 1-5) and
disparities (the same sub-policies have opposite sign w.r.t. feature 0, hence an opposite effect).

described by proprioceptive features, is provided with a goal state to reach. We extend RIS [25], a
goal-conditioned DRL algorithm which encourages during training the policy to match the action
predicted by a “prior” policy (a moving average of the actor) to reach an intermediate goal. We
use the RIS algorithm with HC actors of 8, 16 and 64 sub-policies, and otherwise follow the same
training and evaluation protocol. We detail it along with the hyperparameters in Appendix E.

Performance We observe in Fig. 15 that RIS as well as HC64 perform well in all the mazes,
despite the difficulty of the task illustrated by the wide confidence intervals. Furthermore, HC8
and HC16 solve most of the time the U-shaped maze, and HC16 the S-shaped maze. All reach
the goal in at least one of the seeds, showing that such architectures are not too constrained to
express a goal-reaching policy using a dedicated navigation algorithm. Yet, HC actors require
more interactions than RIS to solve the respective mazes. Their failure rate is overall higher, likely
due to the higher difficulty of the task compared to DM Control. Solving the maze also requires
high-level navigation and low-level control, whereas only the latter was previously required.

Interpretability We finally provide an example of a sequence of sub-policies followed by
HC8 during one successful trajectory, in Fig. 3. This visualization emphasizes how a temporal
abstraction emerges from the hierarchical nature of the HyperCombinator policy. Notably, the HC
actor learns to alternate between sub-policies 0 and 1 to move straight, and between sub-policies 2
and 3 to rotate. This illustrates how the high-level interpretability of HC lets us identify behaviors
followed by the agent to solve the maze. For instance, the usage of sub-policies 2 and 3 at the
beginning of the trajectory indicates that the agent first needed to turn. A comparison with the
video of the agent playing highlights it was initialized facing the wrong direction, justifying this
first rotation. We analyze a wider set of sub-policy sequences in other mazes in Appendix E.

5 Related works

Closest to our work, [11] explore a very similar piecewise-linear policy architecture in the control
setting, though not in the scope of interpretability. In particular, the partitioning induced by the
policy is a soft one, whereas HC induces a hard partition which guarantees that only a single
sub-policy is used at any interaction with the environment. Previous work also showed that
linear [26] and discrete [27] policies performed surprisingly well in control environments, at the cost
of a reduced flexibility and therefore a likely reduced ability to solve complex tasks. Other works
focus on learning highly structured policies [28, 29], training a decision tree actor with imitation
learning [30, 31, 32] on control tasks or leveraging abstract actions to solve mazes [33, 34, 35].
On the contrary, HC aims to learn functionally interpretable policies that handle both to low-level
continuous control and high-level planning. Other works use non gradient-descent optimization
methods to learn inherently interpretable policies [36, 37]. Researchers have also focused on
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Figure 3: (Top left) The quadruped solving the maze. (Bottom) HC8 sub-policy sequence
after 2M steps. We note the appearance of motifs (repetitions of subsequences of sub-policies)
matching the behavior observed on the agent: rotation, then straight movement, then rotation to
change corridor and a straight movement. (Top right) Trajectory of sub-policy choices superposed
with the maze: each colored point refers to the sub-policy chosen at that location. The grouping
of colors illustrate the empirical emergence of temporal abstractions.

improving the interpretability of neural policies defined on high-dimensional domains [38, 39],
while we focus on interpretable proprioceptive states. Further from our work, there has been
efforts to make the Q-function interpretable [40, 41]. Tangentially, a recent work studied the
evolution of the linear regions of a ReLU MLP in deep reinforcement learning [42].
Several navigation methods incorporate a hierarchical component in the policy training, which
can inform the policy architecture [24, 43, 44] or guide it during training [25]. We focus on
making the policy more interpretable by building off the later method, restricting its expressivity.
Options [45, 46] are another type of temporal abstraction. In comparison, our method does
not need to define an initiation or termination set. Finally, HC policies can be thought of as a
hypernetwork [47] that predicts the coefficients of a policy linear w.r.t. interpretable features.

6 Discussion

In this article, we studied whether piecewise-linear policies can be a suitable compromise between
performance and interpretability in DRL. To this end, we presented the HyperCombinator
architecture, an implementation of a piecewise-linear actor that combines a controllably small
set of inherently interpretable sub-policies to interact with the environment in a transparent
manner. We showed that in several control and navigation environments, the performance loss
due to the reduced expressivity of our policy class was limited. Moreover, we illustrated how new
visualizations, possible thanks to the two levels of interpretability provided by HC policies, give us
insights on an agent’s interactions with its environment. We also noticed the empirical emergence
of temporal abstractions in the policy in both the control and select navigation settings.
This work could be improved in several ways. Currently, the assignation function learnt by the
policy is not interpretable, which prevents explaining why a sub-policy was chosen. Moreover,
the HC interacts transparently with the environment, but is not a causal architecture. So our
policy ultimately does not fully answer "why" an action was taken, instead giving an interpretable
decision conditioned on the sub-policy choice. Nonetheless, this is a significant step compared to
current DRL algorithms, which are far from meeting the most basic standards of explainability.
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A Background

A.1 Deep reinforcement learning and interpretable policies

In reinforcement learning, an agent learns to interact with its environment to maximize the
accumulation of a learning signal, the reward [48]. The environment is modeled as a Markov
Decision Process (MDP) defined as a tuple (X , A, R, P, γ, ρ0). At each timestep t, the agent
in state xt ∈ X takes the action at ∼ π(xt) ∈ A. The agent then transitions to xt+1 ∼
P (·|xt, at) and receives reward rt+1 = R(xt, at, xt+1). We denote with ρ0 the starting state
distribution and represent a trajectory τ as (x0, a0, x1, . . . , xT ), where T is the last timestep
of the trajectory if the environment is episodic, and T = ∞ else. The discounted sum of
rewards is G(τ) =

∑T −1
t=0 γtrt+1, and we denote its expectation Jπ = Eτ [G(τ)]. Fundamental

in reinforcement learning is the function Qπ, for which for a given state and action, Qπ(x, a) =
Eπ

[∑T −1
t=0 γtR(xt, at, xt+1)|x0 = x, a0 = a

]
. Actor-critic algorithms solve an MDP by modelling

explicitly both π and Qπ. They aim at finding a policy π∗ such that π∗ = argmaxπJπ.
Both Qπ and π can be parametrized by deep neural networks (NNs) to handle high-dimensional
input spaces and increase the performance of the agent [49]. However, this modelisation limits
our understanding of the actions of an agent, due to the opacity of NNs.
In this work, we tackle the task of making the policy interpretable at each timestep. Since we
focus on functional interpretability, we constrain the class of functions that the policy belongs
to. That is, we design a policy architecture that gives exact insights about the decision applied
to state xt. The last layer of deep policies is often a non-linearity µ, such as the softmax
function, to cast the prediction of the NN to the right action space. In a similar fashion to the
interpretation of logistic regression, we focus on interpreting the pre non-linearity part of the
policy, which we denote by π̃. Finally, we remark that an interpretable model is of limited utility if
the input features themselves are not interpretable. Therefore, we consider robotics environments
with varying levels of difficulty and where the input to the policy is the proprioceptive state
representation, each feature representing a physical variable describing the agent [22].

A.2 Post-hoc, distillation and functional interpretability

We begin by setting the context of interpretability in machine learning. We wish to explain
a deployed model and its predictions to users of varying expertise. There exists three main
approaches to do so:

• A post-hoc method is an auxiliary model that extracts explanations from a complex (potentially
a black box), well-performing deployed model [50, 51, 52, 53, 54]. We can expect good
performance from the deployed model. However, the explanations are provided by the auxiliary
model, which raises questions about their reliability, their accuracy or their robustness [55, 13,
56, 57].

• Distillation methods first train a complex “teacher” model, and then fit and deploy a simpler
“student” model on the predictions of the teacher [58, 30]. The explanations come from
the interpretable nature of the student (e.g. a shallow decision tree or a linear model). Yet,
defining the data distribution to fit the student on can be challenging, especially in the DRL
setting [59, 60].

• Functional methods [10] directly train an interpretable model, which is deployed and explain
its decisions [13, 39]. The end-to-end approach to interpretability often imposes limits on
expressivity that can imply a performance trade-off.

In this work, we focus on functional interpretability. To achieve it, one can reduce the size of the
class that the model belongs to [13]. Classes of functions that can be expressed through a small
number of parameters, such as linear functions or shallow decision trees, are often considered to
be interpretable due to the reduced amount of information required to understand the function
they realize [61]. Yet, designing such a model is challenging, since inherently interpretable models
are at odds with the complexity and expressivity required to solve hard tasks. For instance, a
linear policy might not be expressive enough to solve an intricate maze. Moreover, the inclusion
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of discrete components, while often involved in interpretable models [10], can make training
unstable.

B Reducing the size of the network to limit its complexity

B.1 Theoretical analysis

Reducing the width or the height of an MLP is an alternative and more direct way than our
proposed approach to reduce the number of unique coefficients. In fact, reducing the size of the
MLP also reduces the size of the partition, i.e. the number of linear regions, on the contrary
to our proposed solution. The main issue with this approach is that controlling the number of
unique coefficients becomes impractical, since the maximum number of linear regions (which is
the quantity we have control over) grows at least exponentially w.r.t. the depth and polynomially
w.r.t. the width of the network [62, Corollary 5]. For instance, a relatively small MLP with a
one-dimensional input and 2 layers of 64 neurons each can express a maximum of over 4000
linear regions [62, Theorem 4]. Finally, accessing the linear coefficient for a given feature xi

requires a backward pass when using an MLP, while it can be directly outputted as part of our
solution, since we compute this quantity explicitly in the forward pass.

B.2 Empirical analysis

We complement the theoretical analysis of the upper bound by an empirical analysis of the actual
number of unique linear regions used by small variants of the Soft Actor Critic algorithm (SAC).
To do so, we train variants of SAC with an MLP actor architecture of depth 1, 2 and 3 and
width of 2, 4, 8, 16, 32, 64, 128 and 256 units. We then roll out each variant in the Cheetah run
environment (prone to sub-policy re-use due to the periodicity of the task) 10 times. We repeat
the procedure for 10 seeds, which gives us, for each variant, 100 measures of the episode return
(performance metric), and 100 number of unique sub-policies used (USPU) during the trajectory
(complexity metric). We then produce a Pareto plot illustrating the trade-off between complexity
and performance for small SAC architectures, in Fig. 4. We also compare the small variants of
SAC with 2 variants of the HyperCombinator, respectively with 8 (HC8) and 64 (HC64) possible
sub-policies.
We observe that overall, the performance of SAC is correlated with the number of unique
sub-policies used during a trajectory. As a consequence, models with a small USPU metric tend
to perform significantly worse than the more complex variants. For instance, to reach an average
return of 700, variants of SAC need at least 200 unique sub-policies. This means that in average,
each sub-policy is used only 5 times during a trajectory. In addition, if we limit the complexity
to 100 USPU, the average return of SAC variants barely surpasses 600, well below the average
return of 800 reached by the more complex SAC variants. Conversely, our proposed approach
offers a better trade-off between complexity and performance SAC. Indeed, HC8 and HC64 are
located further than the SAC Pareto front, as they manage to obtain significantly higher return
for comparable complexity, or equivalently a comparable return with a much smaller number
of unique sub-policies used. While in this particular example, HC8 outperforms even the SAC
variants with the biggest architectures (see also Fig. 6), we insist specifically on the excellent
performance of HC8 and HC64 w.r.t. SAC variants that use a comparable number of USPU.
In conclusion, simply limiting the architecture of SAC is not an adapted solution to our problem,
since one cannot exactly control the number of unique sub-policies that will be used, and since
the performance decreases severely for low number of unique sub-policies used (<100), even
more so with very low number of unique sub-policies used (<10).
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Pareto plot: performance against re-usage of sub-policies

Average # of unique sub-policies used

Figure 4: Pareto plot comparing the HyperCombinator actor and SAC with different small
architectures on performance (y-axis, higher is better) and number of sub-policies used during a
trajectory (x-axis, lower is better). Note the inversion of the x-axis, such that the best models are
located in the top right part of the plot (with high return and low number of unique sub-policies
used). We display error bars representing the 95% bias corrected and accelerated bootstrap
confidence intervals (9999 resamples).
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ReReRe-usage of subpolicies in a trajectory

Figure 5: During a trajectory, a SAC actor visits a new linear region (and uses a new locally
linear sub-policy) at almost every timestep. On the contrary, our HC agent can only express one
of the 8 or 64 sub-policies at his disposal, which forces it to learn sub-policies that are valid for a
wide range of inputs.

C Sub-policies reuse

Since SAC uses an MLP as the policy, the policy is also a piecewise-linear function. We study in
this section how often does the policy re-use the same linear region in a trajectory.
We perform the experiment using the trained models of Sec. 4.1, on the Cheetah run environment,
which is particularly favorable to the reuse of sub-policies. We rollout the trained policies of
SAC, HC8 and HC64 for an entire trajectory and record, for each timestep, the number of unique
sub-policies used to interact with the environment until the current timestep. This yields a
non-decreasing sequence of integers per algorithm. The lower the curve, and the less sub-policies
are being used by the policy. We repeat the same procedure 10 times, and compute the mean
curve as well as a 95% confidence interval using the bias corrected and accelerated bootstrap
(9999 resamples).
We display the results in Fig. 5. The HyperCombinator cannot express more than dG sub-
policies, which caps the corresponding plots for both HC8 and HC64. We observe that the
curve corresponding to SAC linearly increases almost without failure. This indicates that SAC
barely reuses past sub-policies, i.e. that a new locally linear function is applied at practically each
timestep. Moreover, this sub-policy is shared by all seeds, given the thinness of the confidence
interval.
This does not mean that SAC strictly overfitted the trajectory or completely memorized the
sequence of policies to apply during the trajectory: indeed, there is a great amount of parameter
sharing between the linear coefficients in θ. Thus, there is generalization happening between sub-
policies, even if a different linear region is used at each timestep. Yet, the precise generalization
mechanism is obscure, and it is not clear to what extent updating a sub-policy will affect the
other sub-policies. Perhaps more importantly to our use case, one still needs to enumerate all of
the sub-policies when describing the possible interactions of the policy with the environment,
given that even though they might share parameters, each sub-policy uses a different set of linear
coefficients. As a consequence, this makes the SAC policy highly uninterpretable, on the contrary
to the HyperCombinator where the size of the exhaustive list of sub-policies is capped by dG.
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D Control experiments

D.1 Precisions regarding the architecture of the HyperCombinator

We can use the HyperCombinator as the actor of any actor-critic algorithms, provided that no
competing assumption is made on the architecture of the policy. This means that the critic or the
potential other parts of the RL algorithm can be modeled by complex neural networks without
affecting the interpretability of the policy. We note that in practice, all the linear sub-policies
share the same bias vector. This limits the flexibility of the sub-policies, but also increases their
interpretability since they all reduce to the same default sub-policy at x = 0. We adapt µ to
the action space of interest. In addition, we note that the Gumbel-Softmax layer can destabilize
training. For instance, its predictions may collapse to a single mode, making π̂ equivalent to a
linear policy. We alleviate this issue through different forms of regularization. First, we increase
the temperature parameter and add weight decay to the last layer weights of the Gumbel network
MLP. Both limit the magnitude of the input fed to the Gumbel-Softmax layer. Secondly, we
maximize the entropy H of the average sub-policy assignation over a batch of size B, that is
H( 1

B

∑B
i=1 â(xi)). This encourages the Gumbel network to use the diversity of sub-policies at

its disposal.

D.2 Implementation details

We base ourselves on an open-source PyTorch implementation of SAC [63] with its default
hyperparameters, listed in Table 2. We detail below the modifications needed to implement
the HyperCombinator and replicate the experiments, and keep the rest of the existing code for
training and evaluating SAC and HC.

SAC algorithm We modify the actor of the Soft Actor Critic algorithm (SAC) [23], a strong
continuous control agent learning from proprioceptive observations. The original actor is modeled
as an MLP that predicts a vector of size 2|A|. The output vector is then split into two parts, the
mean of the action predictive distribution, π̃ and its log standard deviation, log σ. We note that
this implies that the mean π̃ and the log std log σ share some of their parameters through the
shared structure of the actor. The log standard deviation is transformed to belong to the interval
[log σmin, log σmax] using the following formula:

t(u) = log σmin + (log σmax − log σmin) · u + 1
2 (2)

Finally, the action predictive distribution for state x is defined as a squashed normal :
µ (N (π̃(x), exp t(log σ(x)))) (3)

where µ is the non-linear transformation ensuring that the action belongs to the environment
action space. In practice for the DeepMind Control Suite, we use tanh as µ to force the predicted
actions to belong to [−1, 1].
The critic is learnt via double Q learning [64]. Each critic network is a 2-layer MLP. The strength
of SAC entropy regularization (represented by the hyperparameter α) is automatically learnt
during training. We use Adam to optimize all parameters. All weight matrices are initialized
using orthogonal initialization. All bias vectors are initialized to 0.

HyperCombinator modifications With the HyperCombinator, we model the mean π̃ and
the log std log σ with independent networks. HC first models log σ as an MLP with the same
architecture as in SAC, but that only outputs a vector of size |A|. Then, HC models π̃ as a Gumbel
network, that is, the composition of an MLP, a Gumbel-Softmax layer (with the straight-through
estimator) and a linear layer. The rest of the computation of the action predictive distribution is
left unchanged. In particular, for x, the mean of the squashed normal is in both cases µ(π̃(x))
and does not depend on log σ(x).
We detail the modified SAC algorithm using Alg. 1. We indicate in blue the modifications
due to using a HyperCombinator actor. We remark that the only major modification is in the
architecture of the actor. Therefore, the majority of the structure of the SAC algorithm is left
unchanged. We notice the use of stop_grad to detach a tensor from the computation graph.
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Training details Classically, Gumbel noise is used in the Gumbel-Softmax layer to stochastically
select the sub-policy. After sufficient training, this (Gumbel) trick ensures that we ultimately
sample from the likeliest sub-policy. We only activate Gumbel noise during the actor update, when
computing the action predicted by the actor. When the agent interacts with the environment, we
do not use Gumbel noise, both for training and for evaluation. Therefore, the Gumbel network
selects the most likely sub-policy for all interactions with the environment. This ensures that
the mean of the action predictive distribution is deterministic, like SAC. It also improves the
consistency of the agent over an episode, since for state x, a fixed policy leads to the same
sub-policy. This is not to be confused with the action predicted by the HyperCombinator, which
is sampled from the squashed normal defined in Eq. 3 during training.

Model choice We experiment with different combination of hyperparameters values (Gumbel
network architecture from [64,64] to [1024,1024,1024], and strength of regularization of the
average assignation entropy λassig from 0 to 1) on Cheetah run, from where we selected the best
set of hyperparameters according to the return curve. We then evaluate the HyperCombinator
using the same fixed set of hyperparameters for all the environments.

Evaluation details We evaluate the agent every 10000 timesteps by rolling it out for 10
episodes and taking the average return. During evaluation, all actors act deterministically using
only the mean of the predicted action distribution µ(π̃(x)), without exploration noise (as opposed
to sampling from the predictive action distribution during training). Hence, it is sufficient for
µ(π̃) to be piecewise-linear to get the desired form for the actor at evaluation time. We report
all results and curves in Sec. 4.1 using 10 seeds for each agent. We draw the mean performance
as a colored line, as well as a 95% bias-corrected and accelerated bootstrap confidence interval
in a lighter shade (9999 resamples).

Compute We ran all the experiments on an internal cluster. All the GPUs were NVIDIA Tesla
V100, with 16GB memory available. The CPUs were Intel(R) Xeon(R) CPU E5-2698 v4 @
2.20GHz Each seed was allocated 1 GPU, 10 CPUs, and 64GB of RAM. We detail the compute
budget to reproduce the experiments in Table. 1.

Experiment # models # envs # seeds Avg. duration Compute
Full results (Fig. 6) 3 23 10 6 hours 173 GPU days
Longer horizon (Fig. 10) 3 4 10 34 hours 170 GPU days
Perf.-interpret. gap (Fig. 11) 8 1 10 17 hours 57 GPU days
Small SAC (Fig. 4) 24 (*) 1 10 6 hours 60 GPU days

Table 1: Compute budget for the control experiments. (*) the HyperCombinator plots were
already computed in the full results.

2Shared between the mean net and the log std net
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Hyperparameter name Value

Common (SAC defaults) [63]
Action repeat 1
Discount factor 0.99
Learnable α True
Initial α 0.1
α learning rate λα 1e-4
α Adam momentums [0.9, 0.999]
Actor learning rate λπ 1e-4
Actor Adam momentums [0.9, 0.999]
Actor update frequency 1
Critic architecture [1024, 1024]
Critic learning rate λQ 1e-4
Critic Adam momentums [0.9, 0.999]
Critic exponential moving average ratio 0.005
Critic target update frequency 2
Batch size 1024
log σmin -5
log σmax 2

SAC actor-specific
Actor architecture2 [1024,1024]

HyperCombinator-specific
Gumbel net architecture [1024, 1024, 1024]
Sub-policy assignation entropy coefficient λassig 0.001
Gumbel temperature 1

Table 2: Full list of hyperparameters in the control experiments.

Algorithm 1 SAC (with HyperCombinator actor)
Require: Replay Buffer D
Require: Actor parameters φ
Require: Double critic parameters η1, η2
Require: Double critic target parameters η1, η2
Require: Hyperparameters from Table 2
Require: N ▷ Maximum number of timesteps
Require: s0 ▷ Initial state

while t < N do
at ∼ µ(π̃(st))
st+1 ∼ P (·|st, at) ▷ Sample the next state from the environment
rt+1 = R(st, at, st+1)
D = D ∪ (st, at, rt+1, st+1, dt+1) ▷ Update replay buffer; dt+1 indicates a terminal

transition

(s, a, r, s′, d) ∼ D ▷ Sample from replay buffer
Launch routine UpdateCritic ▷ See paper [23] and code3

if t % actor update frequency == 0 then
Launch routine UpdateActorAndAlpha (see Alg. 2)

end if
if t % critic target update frequency == 0 then

η1 = (1 − critic ema ratio) ∗ η1 + critic ema ratio ∗ η1
η2 = (1 − critic ema ratio) ∗ η2 + critic ema ratio ∗ η2

end if
end while
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Algorithm 2 UpdateActorAndAlpha
Require: s ▷ Batch of states sampled from the replay buffer

a ∼ µ(N (π̃(s), exp(t(log σ(s)))) ▷ π̃ is a Gumbel network and log σ an MLP instead of
being jointly parametrized as an MLP in the base case.
Lassig = H(mean(â(s))) ▷ Compute entropy of average sub-policy assignation
Q = min(Qη1(s, a), Qη2(s, a))
Lπ = mean (stop_grad(α) log π(a|s) − Q) − λassigLassig ▷ Do not backprop. gradients
through α
φ = φ − λπ∇φLπ

if learn α then
Lα = mean(α stop_grad(log π(a|s) + |A|))
α = α − λα∇αLα

end if
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D.3 Results for all DeepMind Control environments

Figure 6: Complete results for the DM control environments.

D.4 Detailed quantitative results

To compute the results, we followed the methodology proposed in the rliable library [65]. We
used the final scores after 990000 frames for each run.
We first investigate the scores produced by rliable in Fig. 7. This lets us quantify the trade-off
in performance that follows the reduction in expressivity of HC8 and HC64 according to several
metrics. In particular, the overlapping confidence intervals between SAC and HC64 indicate that
overall, a very small amount of performance is foregone when one is willing to guarantee that the
agent will interact with the environment in at most 64 different ways.
Fig. 8 illustrates the close performance between SAC and HC64, especially in the environments
where the normalized score is at least 80% of the maximum (i.e., in the games where SAC excels
to begin with). HC8 follows a similar curve, albeit sensibly lower.
Finally, Fig. 9 shows the fraction of environments where the normalized score IQM of HC8
(respectively HC64) is at least a percentage of the baseline SAC score. This visualization is
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helpful to distinguish the relative performance of the HC actors, compared to SAC, on the
different environments. We remark that both for HC8 and HC64, there is a sudden drop around
the 0% relative performance mark, which indicates that HC8 and HC64 have close IQM scores to
SAC in several of the environments. Moreover, HC8 and HC64 perform worse than SAC on most
environments by the end of training, as expected.

Figure 7: Performance metrics computed using the rliable library.

Figure 8: Performance profiles.

Figure 9: Relative performance loss/gain of the HC actors compared to SAC.
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D.5 Longer horizon

In this section, we train the different actors for 5M steps instead of 1M as in the rest of Sec. 4.1.
We focus our study on 4 environments: the first is Cheetah run, to observe if the benefits brought
to early training by the usage of the HyperCombinator are also transferred to later during the
training. The other 3 other environments, Humanoid stand, walk and run, are chosen for their
increased difficulty. We illustrate the results in Fig. 10. We remark that HC actors improve
over SAC for the first 1M timesteps in the Cheetah run environment. After approximately 1M
timesteps, the performance of the SAC actor exceeds the HyperCombinator’s. For Humanoid
run and stand, both Hypercombinator improve over SAC approximately between 1M and 3M
timesteps, with a significant improvement noted for Humanoid stand. For Humanoid walk,
only HC64 improves over SAC, here again approximately between 1M and 3M timesteps. The
competitive performance of the HyperCombinator actors, added to their improved performance
in these hard environments early during training, hints at the benefits of sub-policies re-use.

Figure 10: During early training, HC actors can demonstrate a better sample efficiency thanks
to the re-use of the same sub-policy for several inputs. Over a longer timeframe, the higher
expressivity of SAC leads to matching or better performance.
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D.6 Performance-interpretability gap

In this section, we evaluate how the HyperCombinator agent’s performance evolves when increasing
the number of sub-policies. We run a HyperCombinator actor with 4, 8, 16, 32, 64, 128 and 256
sub-policies on Walker walk for 2.5M timesteps, and observe the results in Fig. 11.
We remark that HC4 reaches a relatively high return, in average higher than 900. This shows
that even with a small number of sub-policies, the HyperCombinator can learn a well performing
policy in certain environments. As we trade-off interpretability for performance by increasing
the number of sub-policies, we see the performance curve increase as well and approach the
performance curve of SAC. This trend culminates with 128 sub-policies. We notice that the
return curve of HC256 decreases compared to HC128.
A HC agent with a higher number of available sub-policies can produce a more finely grained
policy, since each sub-policy can specialize to a smaller part of the state space. Conversely,
learning how to chain a high number of sub-policies might not be straightforward. This last point
is one possible explanation to the lower performance of HC256.

Figure 11: Increasing the capacity tends to increase the performance, as the policy is now able to
exhibit a wider variety of sub-policies. A sufficiently high capacity can help reach a comparable
performance to the base algorithm, here SAC. We notice that too many sub-policies can however
prove harmful: the performance of HC256 sub-policies decreases compared to HC128.

D.7 Robustness to perturbations

In this section, we evaluate the robustness of the HyperCombinator to perturbations. We start
with a regularly trained agent on the Cheetah run task. At evaluation time, after 100 timesteps
(out of a 1000 timesteps trajectory), we ignore the action predicted by the agent and instead
interact with the environment through an action sampled uniformly at random from the action
space. We do so for 100 consecutive timesteps. At timestep 200, we resume normal evaluation
and follow the action predicted by the agent. This perturbation throws the agent off its trajectory.

22



Figure 12: When perturbed with 100 consecutive random actions, HC actors perform overall no
worse than SAC. The box plot summarizes the results of the experiment repeated 10 times for
each seed.

Figure 13: After being perturbed for 100 timesteps, the HC actor manages to resume the task.
sub-policy choices between t=100 and 200 (in turquoise) are ignored since a random action is
used instead.

We repeat this evaluation 10 times per seed, for each of the 10 seeds of an algorithm, for a total
of 100 data points.
We now compare how this perturbation affects HC8 and HC64, compared to the baseline, SAC.
In Fig. 12, we compute for each model the distribution of performance losses, defined as the
performance of the perturbed evaluation subtracted to the performance of the unperturbed
evaluation. We then illustrate the distribution of these performance losses. We see that all
models react similarly to the perturbations. This illustrates the fact that the HyperCombinator is
no less robust to perturbations than the base neural policy, despite its non-continuity. A similar
conclusion was already found when comparing linear models to neural baselines [26]. Accordingly,
diversifying the initialization distribution could improve the robustness of the model.
We illustrate in Fig. 13 how the agent, after being perturbed for 100 timesteps, manages to
resume the cyclical choice of sub-policies that lets it solve the task.

D.8 Analysis of the linear coefficients interpretability in Cartpole

We now analyze the low-level interpretability benefits of our method when applied to the Cartpole
environment.
In this environment, the agent controls the translation of a cart on an axis in order to swing up and
then stabilize a pole. We write the sub-policy i as: b+wi

xx+wi
sin θ sin θ+wi

cos θ cos θ+wi
ẋẋ+wi

θ̇
θ̇,

for an input (x, sin(θ), cos(θ), ẋ, θ̇) and sub-policy coefficients wi
· . Note that there is a single

action: for a given positive feature, the contribution tends to move the cart towards the right if
the corresponding coefficient is positive and left if negative.
We visualize the results in Fig. 14. The left plot is an alternative visualization of the sub-policy
coefficients wi (to be compared with the heatmap in Fig. 2, right). This is an easy way to note
similarities between sub-policies and to understand how they are combined. For instance, HC
mainly uses sub-policy B0 (in orange) to stabilize the pole that has been swung up. This is
translated by a negative coefficient in front of the cart velocity, such that if the agent moves
towards the right (causing the pole to tilting to the left), the sub-policy will push the agent
towards the left to balance the pole.
We also see in Fig. 14 (right) that the agent sometimes oscillates between using B0 (orange) and
sub-policy 1 (grey). We can observe in the left plot that they both give a large coefficient to
cos θ, which is around 0 when the pole is stabilized. The positive sign of the coefficient indicates
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Figure 14: Evaluation of HC8 in cartpole swingup. (Left) alternative visualization of the sub-
policies. (Right) sub-policy choice sequence.

that if the pole is tilting towards the right, the agent will tend to move the cart towards the right
to balance the pole. Finally, Fig. 14 (left) shows that B2 (red) and B6 (purple) are extremely
similar. Simultaneously, we see in Fig. 14 (right) that the only setting in which B6 is used is
during an extended period of usage of B2.
We think that this figure is an example of how using a HC actor (rather than a neural one) can
improve the interpretability and our understanding of the task.
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E Navigation experiments

E.1 Implementation details

We base our experiments on the open-source code provided by RIS [25]4, and use most of its default
hyperparameters. We detail in Table 4 the common hyperparameters and the hyperparameters
we change for the HyperCombinator.

RIS algorithm RIS belongs to the family of goal-conditioned RL algorithms, that learn a policy
π(s, g). RIS aims at guiding the policy, during training, to produce the same action to reach a
goal as the action to reach an imaginary subgoal located halfway through the trajectory. In this
case, the notion of distance implied in “halfway” means that as many steps are needed to go
from the current state to the imaginary subgoal than from the imaginary subgoal to the goal (as
opposed to an Euclidean notion of distance that would not be suitable in mazes).
To do this guiding, a prior policy πprior is defined as an empirical moving average of the online,
interacting policy. A neural network (denoted a high-level policy in the original paper) learns
online to generate likely subgoals sg given a state s and a goal g. Then, given state s, the policy
π(s, g) is constrained to stay close to the prior policy to reach subgoal sg, i.e. πprior(s, sg).
Similarly to SAC, the RIS actor is composed of an MLP on top of which two heads predicting
the mean of the action predictive distribution, π̃(x), and its log standard deviation log σ(x). t′

clamps log σ(x) between log σmin and log σmax. The action is then sampled from a squashed
normal, similarly to SAC. Two critics, each modeled by a MLP, are learnt with double Q learning.
The hyperparameter α ([25, Eq. 9]) is fixed during training. The algorithm uses Hindsight
Experience Replay (HER) [66] to facilitate training, and we refer to the RIS paper for further
details on the specific implementation [25]. All weight matrices are initialized using orthogonal
initialization. All bias vectors are initialized to 0.

HyperCombinator modifications We replace π̃ by a Gumbel network. Similarly to the control
experiments, log σ is still defined by an MLP, but does not share parameters with π̃. As a
consequence of the modelisation of π̃, the prior policy πprior also takes the form of a HC policy.
We do not modify the rest of the algorithm, including the high-level policy that learns to predict
the intermediate goals used for training. Due to memory constraints, we use a batch size of 1024
to train the HyperCombinator, instead of the base 2048. We train RIS with batch sizes of both
1024 and 2048 and ensure that the performance of RIS with 2048 (the base value) improves over
the performance with a batch size of 1024. We detail in Alg. 3 the RIS algorithm and add in
blue the modifications that we apply.

Training details The agents interact with the environment for a maximum of 600 timesteps,
after which the episode is interrupted. We do not use Gumbel noise for any interaction with
the environment, which guarantees that the most likely sub-policy is consistently selected.
Therefore, sub-policies are stochastically chosen only during the update of the actor, in the
UpdateActorAndAlpha routine. During training, the actions are sampled from the action
predictive distribution µ(N (π̃(s, g), exp(t′(log σ(s, g)))) to encourage exploration. We use three
different types of regularization to prevent the Gumbel network from collapsing into the prediction
of a single sub-policy:

• We increase the temperature of the Gumbel-Softmax, controlled by the “Gumbel temperature”
parameter in Table 4.

• We regularize the entropy of the sub-policy assignations averaged over a batch, controlled by
the λassig hyperparameter.

• We penalize the magnitude of the last layer weights of the MLP preceding the Gumbel-Softmax,
through the λweight decay hyperparameter. This forces the input to the Gumbel-Softmax layer
to have a smaller magnitude, and therefore encourages the selection of a more diverse set of
sub-policies.
4https://github.com/elliotchanesane31/RIS
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Model choice We experiment with different combinations of the architecture of the Gumbel
network (from [32,32] to [1024,1024,1024]), the sub-policy assignation entropy coefficient λassig
(between 0 and 0.1), the Gumbel temperature (from .5 to 10), the weight decay coefficient
(between 0 and 0.001) and the RIS hyperparameter α (between 0.05 and 0.4) on the U-shaped
maze and the ω-shaped maze (we found that the relative simplicity of U-shaped maze compared
to the other environments meant that design architectures useful to solve the U-shaped maze
would not always generalize to the other tasks) and select the final set of hyperparameters based
on the return curve. We then run the final experiment on all environments, keeping the same
hyperparameters for all variants of the HyperCombinator (i.e. HC8, HC16 and HC64).
A notable difference with the control experiments is that we found that smaller Gumbel network
architectures worked best. Therefore, we selected a [64, 64, 64] architecture for the navigation
experiments, as opposed to [1024, 1024, 1024] for the control experiments. We have overall
observed in both control and navigation experiments that a wider and deeper Gumbel network
architecture usually requires a stronger regularization to perform well on the task. It is possible
that increasing even more the regularization could help the [1024, 1024, 1024]-architecture solve
the maze tasks. The success of the smaller architecture and the failure of the bigger one, which
such a high regularization of the Gumbel network, is another clue that the key to solving the maze
might be to find a trainable and sufficiently regularized architecture that efficiently combines the
different sub-policies.

Evaluation details During evaluation, all actors act deterministically using only the mean of
the predicted action distribution µ(π̃(s, g)), without exploration noise (as opposed to sampling
from the predictive action distribution during training), which guarantees the piecewise-linearity
of the policy. We remark that this departs from the base code, that evaluated stochastic agents.
Every 10000 steps, we roll out 5 evaluation episodes and report the mean success score, i.e. 1 if
the agent reached the goal and 0 else. We report all results and curves using 10 seeds for each
agent. We draw the mean performance as a colored line, as well as a 95% bias-corrected and
accelerated bootstrap confidence interval in a lighter shade (9999 resamples).

Compute We ran all the experiments on an internal cluster. All the GPUs were NVIDIA Tesla
V100, with 16GB memory available. The CPUs were Intel(R) Xeon(R) CPU E5-2698 v4 @
2.20GHz Each seed was allocated 1 GPU, 10 CPUs, and 64GB of RAM. We detail the compute
budget to reproduce the experiments in Table. 3.

Experiment # models # envs # seeds Avg. duration Compute
Full results (Fig. 15) 4 4 10 23 hours 153 GPU days
Temperature ablation (Fig. 20) 8 1 10 11 hours 37 GPU days

Table 3: Compute budget for the navigation experiments.

4https://github.com/denisyarats/pytorch_sac
5Shared between the mean net and the log std net
6https://github.com/elliotchanesane31/RIS
7https://github.com/elliotchanesane31/RIS
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Hyperparameter name Value

Common (RIS defaults)
Discount factor γ 0.99
Success distance threshold 0.5
Burn in 1e4
Replay buffer size 1e6
Learning rate for the high-level policy λhigh-level 1e-4
Learning rate for the critics λQ 1e-3
Learning rate for the policy λπ 1e-3
Critic architecture [256, 256]
Critic empirical moving average ratio 0.005
Critic target update frequency 1
High-level policy architecture [256, 256]
sub-policy assignation entropy coefficient 1e-4
ϵ 1e-16
HER replay buffer goals ratio 0.5
λ 0.1
log σmin -20
log σmax 2

RIS actor-specific
Actor architecture5 [256, 256]
Batch size 2048
α 0.1

HyperCombinator-specific
Gumbel net architecture [64, 64, 64]
Batch size 1024
sub-policy assignation entropy coefficient λassig 0.01
Weight decay coefficient λweight decay 0.0001
Gumbel temperature 7
α 0.3

Table 4: Full list of hyperparameters in the navigation experiments.
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Algorithm 3 RIS (with HyperCombinator actor)
Require: Replay Buffer D
Require: Actor parameters φ
Require: Double critic parameters η1, η2
Require: Double critic target parameters η1, η2
Require: High-level policy parameters
Require: Hyperparameters from Table 4
Require: N ▷ Maximum number of timesteps
Require: s0, g0 ▷ Initial state

while t < N do
at ∼ µ(π̃(st, gt))
st+1 ∼ P (·|st, at) ▷ Sample the next state from the environment
rt+1 = R(st, at, st+1)
D = D ∪ (st, at, rt+1, st+1, dt+1) ▷ Update replay buffer; dt+1 indicates a terminal

transition

(s, a, r, s′, d, g) ∼ D ▷ Sample from replay buffer using HER
Launch routine UpdateCritic ▷ See paper [25] and code6

Launch routine UpdateHighLevelPolicy ▷ See paper [25] and code7

Launch routine UpdateActorAndAlpha (see Alg. 4)
η1 = (1 − critic ema ratio) ∗ η1 + critic ema ratio ∗ η1
η2 = (1 − critic ema ratio) ∗ η2 + critic ema ratio ∗ η2

end while

Algorithm 4 UpdateActorAndAlpha
Require: s, g ▷ Batch of states and goals sampled from the replay buffer

a ∼ µ(N (π̃(s, g), exp(t′(log σ(s, g)))) ▷ π̃ is a Gumbel network and log σ an independent
MLP instead of being a jointly parametrized MLP in the base case.
Lassig = H(mean(â(s, g))) ▷ Compute entropy of average sub-policy assignation
Lweight decay = ||W ||22 ▷ Magnitude of the Gumbel network MLP last layer weights W
Q = min(Qη1(s, a), Qη2(s, a))
Lπ = mean (α log π(a|s, g) − Q) − λassigLassig + λweight decayLweight decay ▷ Minimize the
magnitude of the Gumbel network last layer weights
φ = φ − λπ∇φLπ
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E.2 Performance of HC compared to RIS

Figure 15: HC actors learn to solve the navigation tasks with a reduced sample efficiency.
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E.3 Additional policy visualizations

In Fig. 3 we illustrated a typical sequence of sub-policies followed by HC16 on the S-shaped maze.
In this section, we propose a wider variety of sub-policy sequences, showing examples where
the emergent temporal abstraction appears clearly, and some where this temporal abstraction
is harder to spot, or, interestingly, is lost over training. For each situation, we show sub-policy
sequences taken during evaluation after .5M, 1M, 1.5M and 2M training steps.

HC8, U-shaped maze (Fig. 16) This figure shows a well-performing HC8 policy in U-shaped
maze. We note the clear separation of three phases in the bottom plot, as the quadruped learns
to go down the corridor in the first phase, using mostly sub-policy 0 and 1, then turns right and
navigates the bottom corridor with sub-policies 2 and 3, before re-using sub-policies 0 and 1 to
go up the right corridor and solving the maze.

Actual sub-policy taken, 0.5M steps (goal not reached in 600 steps)

Actual sub-policy taken, 1M steps (goal reached in 408 steps)

Actual sub-policy taken, 1.5M steps (goal reached in 314 steps)

Actual sub-policy taken, 2M steps (goal reached in 255 steps)
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Figure 16: Example of a well-performing HC8 agent in the U-shaped maze.
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HC64, ω-shaped maze (Fig. 17) This figure illustrates the policies learnt by HC64 on the
challenging ω-shaped maze. We particularly note the appearance of “diagonals”, where the same
sequence of sub-policy is repeated several times. These diagonals recall the sub-policy sequence
obtained for Cheetah run in the control experiments, as the agent learnt to chain its sub-policies
to move itself. After 100 timesteps in the bottom figure (final evaluation after 2M training steps),
HC64 switches from one set of repeated diagonals to another, and barely re-uses the sub-policies
forming the first set of repeated diagonals until the end of the trajectory. We conclude that the
first set of repeated diagonals was specialized to the first phase of the trajectory.

Actual sub-policy taken, 0.5M steps (goal not reached in 600 steps)

Actual sub-policy taken, 1M steps (goal not reached in 600 steps)

Actual sub-policy taken, 1.5M steps (goal reached in 481 steps)

Actual sub-policy taken, 2M steps (goal reached in 354 steps)
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Figure 17: Example run of HC64 solving the ω-shaped maze. We note the appearance of
“diagonals” that are reminiscent of the control experiments.
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HC64, U-shaped maze (Fig. 18) We have seen in the previous example that a structure
emerged in the sub-policies, learning to repeat chains of sub-policies (“diagonals”) to move
itself. Fig. 18 illustrates the possible effects of long training on this structure. This structure is
particularly present after .5M timesteps, and the sub-policies in the second part of the trajectory
are not used during the first part of the trajectory. However, as training progresses, the structure
is progressively forgotten, which makes the bottom sub-policy sequence plot harder to read. One
possible explanation is that the agent learns to “overfit” the task, resulting in a lower re-use
of sub-policies, but a better performance (as evidenced by the progressively lower number of
timesteps required to solve the task). This might also be due to the high regularization that we
enforced on the Gumbel network, forcing agents to use as many sub-policies as possible.
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Actual sub-policy taken, 0.5M steps (goal reached in 410 steps)

S
ub

po
lic

y 
#

Actual sub-policy taken, 1M steps (goal reached in 327 steps)
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Actual sub-policy taken, 1.5M steps (goal reached in 295 steps)
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Actual sub-policy taken, 2M steps (goal reached in 252 steps)

Figure 18: The learnt structure (top plot) can get lost as the agent learns to solve efficiently the
maze (bottom plot).
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HC16, Π-shaped maze (Fig. 19) Fig. 19 finally provides an example of a policy where
structure is difficult to observe. HC16 learns to solve the Π-shaped maze after 1.5M timesteps,
but no particular structure emerges. In addition, we see one example of HC16 forgetting how
to solve the maze in the bottom plot. We note that despite this fact, the HyperCombinator
architecture guarantees that we can bring transparency to the interaction of the agent with the
environment, conditioned on the knowledge of the sub-policy chosen. Notably, we still have
access to all the sub-policies that define how HC16 interacts with the environment.
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Actual sub-policy taken, 0.5M steps (goal not reached in 600 steps)
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Actual sub-policy taken, 1M steps (goal not reached in 600 steps)
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Actual sub-policy taken, 1.5M steps (goal reached in 319 steps)
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Actual sub-policy taken, 2M steps (goal not reached in 600 steps)

Figure 19: HC16 can learn to solve the maze without displaying obvious structure in its sequence
of sub-policies (3rd plot).
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E.4 Effect of Gumbel temperature on performance

We run an ablation to see the effect of changing the temperature hyperparameter, all other
hyperparameters being held the same as in the navigation part of Sec. 4. We evaluate the
HyperCombinator variants for temperature values of .5, .66, 1, 2, 3, 5, 7 and 10 in the U-shaped
maze. In general, a higher temperature value tends to increase the stochasticity of the Gumbel
network, meaning that the Gumbel network will be more uncertain of which sub-policy to choose
(and will also increase gradient sharing during the backward pass).
We visualize the results of the ablation in Fig. 20. Overall, low temperature values impede
learning, and the resulting agents do not succeed in the U-maze. Higher temperature values led
to better performing agents, though the overall return curve remains noisy in all cases.

Figure 20: Low temperature values lead to insufficient regularization and HC64 fails to solve the
maze. Increasing the temperature overall leads to better performance, except for the highest
temperature.
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