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Abstract

Off-policy evaluation is known to suffer from high variance in
large action spaces. Recent estimators leverage existing structure
to reduce the problem dimensionality by using action embeddings.
Yet, which properties lead embeddings to be useful for downstream
evaluation remains an open question. To answer it, we benchmark
several embeddings in a variety of synthetic environments. We
observe that even if they exist, the causal action embeddings may
not lead to the lowest error in downstream estimation. We then
analyze the sensitivity of our findings through several ablations, and
highlight that the presence of flat, redundant regions in the reward
function, as well the dependency of embeddings on the reward, are
key to reducing the variance of embeddings-based estimators. All
code and data to reproduce our results will be publicly available.
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1 Introduction

Algorithmic decisions such as the choice of an item to display, the
format of an e-mail to send, or the selection of an advertisement
to serve shape the experience of users during online interactions.
Personalized choices help ensure quality recommendations, which
in turn lead to good user engagement with the proposed content.
Large quantities of logged data are generated from interactions
with past policies. Crucially, practitioners can evaluate the perfor-
mance metrics of new candidate policies on this logged data without
having to execute a costly and lengthy A/B test [16]. Common esti-
mators in this setting, known as off-policy evaluation (OPE, [19]),
suffer however from exceedingly high variance. Large action spaces
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are a common cause to this drawback, either because the number
of items to be recommended are plentiful, as is often the case in
e-commerce recommendation, or because the action space itself
becomes combinatorially large [27].

Recent methods solve this problem by leveraging the structure
over the actions using action embeddings similarity [13, 21]. When
the embeddings compress the action information, they help reduce
the variance of the so-called embeddings estimator. Clusters or
hierarchies over the actions can serve as a discrete embedding [6, 21,
23]. This kind of structure, ubiquitous in the web, may yet only be a
partial observation of the true latent structure. At the same time, an
estimator using continuous action embeddings aligned when their
rewards are correlated, PC-IPS, has recently been explored [20].

How to devise these embeddings, however, is not clear. Fully or
partially observed causal action embeddings directly conditioning
the reward or matrix factorization embeddings have both been
studied as suitable candidates, but the criterion for this choice
remain elusive. Moreover, the exact properties of action embeddings
which enable a lower OPE error are uncertain. In this work, we
investigate further the links between the properties of the action
embeddings and the performance of the PC-IPS estimator.

Contributions. Our contributions are the following:

e We rigorously benchmark embedding estimators whose em-
beddings have access to different levels of information, vary-
ing the amount of action structure and the reward functions
classes in the testing environments,

e We shed light on the primacy of the reward information in
designing low-variance embeddings estimators.

2 Related works

Dealing with variance. In OPE, the biggest challenge to obtaining
a low error is perhaps controlling the variance of the policy value
estimator. Several estimators [3, 5, 20, 22, 27] inherit the importance
weighting scheme of the reward from the IPS estimator [7, 9]. As
a consequence, their variance explodes in the case of large action
spaces or in presence of rare actions (according to the logging
policy). Control variates methods lower the variance of the OPE in
a problem instance-specific manner [2, 10, 30, 31]. Thresholding [3],
shrinking [24] or normalizing [26] the importance weights are
additional tools to mitigate the variance issue.
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Structure on the action space. In practice, the existing structure
over the actions can be leveraged through action embeddings to
handle large action spaces. MIPS [21] computes the importance
weights w.r.t. discrete or continuous stochastic embeddings. MIPS
was shown to (1) provably lower variance when the reward is
directly conditioned by the causal embedding, and (2) trade-off
favorably bias and variance when partially observing the causal em-
bedding. It belongs to a more general family of estimators centered
on compressing the information from the reward function [28].
OffCEM (23] and LIPS [13] are respectively a doubly robust and a
trainable embedding variant of MIPS. On the contrary, PC-IPS [20]
convolves together the reward of actions with similar continuous
deterministic embeddings. The continuous formulation expresses
partial action similarities, and thus partial contributions to the
estimation. Continuous embeddings also open the door to using
pre-existing representations of actions, potentially trained without
a reward signal, such as LLM embeddings of textual actions. In
addition, we remark that recent works have focused on estimating
the value of stochastic policies in continuous action spaces, where
the action is the embedding, using kernels [11, 14, 32]. Finally, the
idea of structure has also been developed for online bandits [1, 6].

3 Methods

Notations. We denote the real line R. P(S) refers to the set of
probability distributions over the set S.

3.1 Off-policy evaluation in bandits

Let X a context space, A an action space. Let R : X X A — P(R)
a (stochastic) reward distribution. We denote the expected reward
given a context and action g(x,a) = E [R(x, a)]. Without loss of
generality, we consider a causal embedding function & such that
q(x,a) = §(x,E(a)). A policy = maps X to P(A). Contexts are
sampled from a distribution p(x), while actions are sampled from
policy 7 : X — P(A) as a ~ m(x) with probability 7 (a|x), abusing
notation. The value of a policy 7 is V() = Ex~p a~x [q(X, A)].
7o collects a dataset Dy = {(x;, aj, ri)}g\il under the probabil-
ity distribution p(x) o (a|x)p(r|x, a). Off-policy evaluation aims at
evaluating the value V() of an arbitrary target policy 7 from Dy.

Inverse propensity scoring (IPS) [9] is (under some assumptions)

N zailxi) .

i=1 my(ai|x;)
Estimators are traditionally compared using the mean-squared

error (MSE) criterion w.r.t. V (), which decomposes into the sum

of squared bias and variance [8]. It is often desirable to design esti-

mators that trade-off some bias for a bigger variance reduction [21].

an unbiased estimator of V (rr): Vips (1) = ﬁ >

3.2 Information sharing in large action spaces

To handle the large importance weights of estimators derived from
IPS, we may compute importance weights w.r.t. action embeddings.
Intuitively, embeddings should be “similar” when the actions they
represent lead to close rewards for all contexts [20]. The probabil-
ities of similar actions are then aggregated, reducing the adverse
effects previously mentioned. This idea is concretized by an abstract
estimator (Eq. Sim) defined w.r.t. an observed embedding ¢:

o) = %i Secar(ab)sim@@.¢@) o
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which implements both MIPS and the kernel version of PC-IPS (with
bandwidth h) for sim respectively 14 (q)=¢(») and k,(¢(a), $(b)).

What properties for ¢ ? Action structure might exist without the
algorithm designer being able to observe & at all, on the contrary
to the experiments of MIPS and PC-IPS. We then need to choose
design guidelines for ¢, a question that was not investigated by the
previous works [20, 21]. We restrict our study to continuous, deter-
ministic embeddings. First, we focus on whether & is a reference
that ¢ should aim to approximate. Else, the remaining signal to
leverage to design ¢ is the reward. Then, what should be the link be-
tween ¢ and r? Are embeddings reflective of the general similarities
between actions, beyond the reward itself, a good choice?

Benchmark. To answer these questions, we benchmark PC-IPS
on independent (unstructured) and groups (structured) causal em-
beddings to illustrate different levels of action structure. We also
explore two reward function classes, namely a dot-product and non-
linear neural reward functions. We vary the observed embeddings
¢ used by PC-IPS to estimate the policy value (precise methodology
described in App. A.) designed with different levels of information,
ranging from structure-agnostic embeddings and reward informed
matrix factorization (MF) embeddings to the privileged &. To eval-
uate the characteristics of MF embeddings, we learn them using
a dedicated external fully-observed, noiseless dataset of context,
action and rewards. This enables us to focus on the embedding
properties that lead to good estimation with PC-IPS, irrespective of
the issues inherited from small sample sizes or noise.

4 Experiments

We focus our attention on answering the following research ques-
tion: what aspects of the embeddings and of the reward ge-
ometry are responsible for reducing the MSE of PC-IPS?

4.1 Matrix factorization embeddings can
improve PC-IPS over causal embeddings

The main results of the benchmark are illustrated in Fig. 1, and
we push to the appendix additional ablations on the sample size
(App. B.2), the number of actions (App. B.4), the embedding dimen-
sion (App. B.3) and the reward slope (App. B.5).

When action structure is present (bottom of Fig. 1), MIPS (who
has access to the true structure) unsurprisingly performs best. PC-
IPS with causal and MF embeddings then perform similarly and
outperform the naive IPS and PC-IPS with independent embeddings.

More interestingly, in the absence of causal embeddings struc-
ture (top two subplots), PC-IPS using MF embeddings outperforms
both IPS and PC-IPS using the causal embeddings, even though
the latter are causally predictive of the reward and the considered
Lipschitz rewards ensure that actions with close embeddings have
close rewards [20]. The MF embeddings thus extract action similar-
ity signal from the reward function itself, even with uninformative
causal embeddings. This conclusion (also observed by Cief et al. [4])
pushes us to investigate further the reasons for this performance
improvement through two complementary questions: what charac-
teristics (1) of the environment and (2) of the learned embeddings
are conducive of low downstream estimation MSE?
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Figure 1: “Classic” benchmark (10k samples, 1024 actions),
varying causal embeddings (rows) and reward functions
(columns). Lower is better. Statistical significance highlighted
with * (see App. A.1.)

4.2 Benefits from flat regions of the reward

We show that flat regions of the reward
function are key to lower PC-IPS vari-
ance, using a simple setup where the re-
ward is a scaled dot-product, g(x, a) = 100
a(x,&(a)). Fig. 2 shows that PC-IPS

Dot-product | Indep.

w

v 107!
outperforms IPS when the reward func- =
tion is approximately flat (for a ~ 0), 1072
but approaches IPS in the groups case
as a increases. Performance declines at T 5

. . . —
higher r.eward scah‘ng, sugg?stlng MF reward_scaling
embeddings share information across Estimator
actions with significantly different re- — IPS
—— PC-IPS + MF

wards, itself leading to an increase in
bias as shown in App. B.5 (Fig. 13 and

Fig. 14). Figure 2: Ablating the re-

ward slope by scaling.
4.3 Matrix factorization pedy &
generates clusters

of action embeddings

While MF can recover the causal embeddings for dot-product re-
wards , we observe that the algorithm naturally assigns similar
embeddings to actions with similar rewards across contexts. Indeed,
for any two actions a and d’, the projection relationship must satisfy
r(x,a) = (Y (x),$(a)) = (Y(x),¢(a’)) ~ r(x,a’). We distinguish
two mechanisms driving the effectiveness of MF embeddings. The
constructive effect leads MF to extract aligned embeddings when
the causal embeddings exhibit inherent structure (Fig. 15). The de-
ductive effect aligns MF embeddings for actions embedded in low
reward curvature regions, regardless of the true structure.

To isolate these effects, we systematically increase the intra-
cluster variance of group action embeddings datasets (Fig. 3), thus
weakening the constructive effect. Yet, MF embeddings maintain
strong performance even at high intra-cluster variance, confirming
the importance of the deductive effect.
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Figure 3: Ablating the structure of the embeddings. A higher
group actions scale leads to high intra-group variance.

4.4 Risks of non reward-centric embeddings

Constructive and deductive effects can be unified when causal em-
beddings exist, as actions within low-reward curvature clusters
naturally yield similar rewards. This distinction has a more prac-
tical effect when practitioners use arbitrary pre-existing action
embeddings encoding action similarity, such as LLM embeddings.
Actions with semantic differences (therefore with unaligned LLM
embeddings) might impact identically the reward for a specific task.

We design an experiment where actions are described by two
clusters: "reward" clusters (determining the reward) and twice as
many "observed” clusters representing non reward-centric (NRC)
embeddings which fail to capture the reward-relevant compression
of the action space. Fig. 4 shows that MF embeddings leverage the
invariance of the reward to obtain a lower MSE, while NRC embed-
dings cannot do so and perform worse with increasing number of
clusters. We analyze further this result in App. B.1.
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Figure 4: NRC embeddings fail to reduce variance. Using a
fixed number of actions leads to more a complex task with
increasing numbers of observed clusters num_group_actions.

5 Discussion and conclusions

In this document, we delved into the characteristics of embeddings
that help PC-IPS during OPE. Through several experiments and
ablations, we observed the importance of choosing embeddings
that are informed by the reward function, such that the curvature
of the reward function w.z.t. the chosen embeddings is low. In the
future, a self-supervised learning loss [12] could help better match
reward similarity and embeddings similarity [14]. In addition, a
theoretical analysis quantifying exactly how much two actions
leading to similar — but not identical — rewards should interact
would be an interesting follow-up.
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A Evaluation procedure

We extend the evaluation methodology from [21], which we explicate in Alg. 1. In our experiments, the environment is defined by the class
of the reward function and the structure on the causal embeddings that are used to generate the reward. We consider unstructured causal
embeddings, sampled at random, as well as clustered (or groups) causal embeddings, sampled around group representative vectors. We
examine two reward function classes: a dot-product between context x and causal action embeddings &(a), and a randomly initialized neural
network operating on concatenated [x, &(a)], to evaluate PC-IPS behavior across different reward structures. To ensure the generality of our
findings, the parameters of the causal embeddings and reward functions are sampled independently at each seed. For each experiment, we
also evaluate the estimators on the two static reward functions defined by [14], which can be accessed in the appendix.

To be able to evaluate the characteristics of embeddings leading to low error with PC-IPS, we learn the embeddings using an external
fully-observed, noiseless dataset of context, action and rewards. This enables us to focus on the embeddings properties that lead to good
estimation with PC-IPS, irrespective of the issues inherited from small sample sizes or noise. Note that the external dataset corresponds to
prior knowledge that is only accessed to learn the embeddings. The estimation of the policy is then done using the sampled bandit feedback
accessible to all estimators, as detailed in Alg. 1.

Algorithm 1 Evaluation procedure

Require: External dataset Dext = {(x,a,7)}
Define: Distribution p(x)
Define: Causal action embeddings E(a)
Define: Parametrized reward function class f
Learn: Action embeddings ¢(a) = ¢(a; Dext)
for s = 1 to num seeds do
Sample: Reward function parameters 00) st. q(s) (x,a) = f(x,&E(a); 00))
Define: Logging policy ﬂés) (x,a) = softmax[;(q(s) (x,a))
Define: Target policy 7(%) (x, a) = e-greedy(q*®) (x, a))
Compute: Target policy value V(7®); Deyal))
Sample: Bandit feedback Ds = {(x;, ai,7i)}i=1. n
Define: Cross-fitted regression model §(x, a; Ds)
for each estimator est do
Compute: Vest(ﬂ(s);DS)
Compute: ||V (x*)) = Vest(x*); D)3
end for
end for

Table 1: Default environment hyperparameters.

Hyperparameter Value
Reward variance 0.5
B (uniformity of logging policy) 0.1

€ (prob. of taking highest value action)  0.05
Context dimension dy 10
Number of actions 1024
Ratio of deficient actions 0.0
Number of clusters (action groups) 10
Dispersion of action groups 05 0.1
Reward slope a 1

A.1 Additional methodological details

Contexts are sampled uniformly over a dy-dimensional sphere (they are therefore of norm 1). When the causal embeddings are group
embeddings, actions are first assigned at random to a group associated to a group representative vector. Then, the action causal embedding is
sampled from a normal distribution centered on the group representative vector and of variance crgz. We use in practice the scikit-1learn [18]
implementation of the "dictionary learning" algorithm [17] to learn the matrix factorization embeddings extracted from the reward function.
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Table 2: Default embedder hyperparameters.

Hyperparameter Value

Embedding dimension 10
External dataset Deyt number of contexts 1000

Table 3: Default estimation hyperparameters.

Hyperparameter Value
Sample size 10000
Number of seeds 100

Ground truth estimation sample size 20000

Hyperparameter selection. We select the bandwidth of the PC-IPS estimator using the SLOPE++ [29] algorithm, an extension of SLOPE [25].
SLOPE++ is a non-parametric method inspired from the Lepskii principle [15] and adapted to the problem of hyperparameter selection for
OPE.

Statistical methodology. All means are estimated with 100 seeds. We compute the confidence intervals using the bootstrap and default
hyperparameters from seaborn. In bar plots (Fig. 1 and Fig. 5), we compare methods using a paired t-test following the statannotations

library. The lowest significance level (*) is set to 0.05, while the following (**, “** and ****) are respectively setto le—2,1e—3and1 e—4. A
p-value superior to 0.05 is indicated as non significant (ns).

A.2 Comparison between the classical benchmark and the “LML” benchmark

In the following sections, we also record the performance of each estimator on the “LML” benchmark, which refers to two reward functions
that were defined by [14]. We now compare the LML benchmark with the classical benchmark that we studied in the main part of this
document:

o A "classic" benchmark, where the reward function classes include a dot product reward and a randomly initialized MLP. Contexts are
sampled uniformly over a context_dim dimensional sphere (they are therefore of norm 1).

e A "LML" benchmark, where we re-use the reward functions defined in [14]. The causal embeddings ¢ (a) are 2-dimensional continuous
representations of the actions (adapted from the continuous action setting) defined in the 2-dimensional unit cube. Contexts are
sampled uniformly in the 2-dimensional unit cube, and have therefore varying norm.

More precisely, the reward functions from the LML benchmark are defined as such:

e Absolute: g(x, a) = —|xp — ag|

(11

e Quadratic: —(x — a) ( 9 191) (x—a)
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B All results
B.1 Default benchmark (10k samples, 1024 actions)

Uniform | Absolute Uniform | Quadratic
kokkok ns

MSE

Estimator Estimator

Figure 5: LML benchmark with default configuration (10k samples, 1024 actions).

Analysis. In the left subplot of Fig. 5, we notice that the matrix factorization embeddings significantly outperform both IPS and PC-IPS +
causal. We can explain the latter performance improvement by the ability of MF to ignore the irrelevant second coordinate of the context,
therefore compressing the information contained in the reward function. We verify this behavior by plotting a T-SNE transformation of the
MF embeddings in Fig. 6. In the left subplot, we color each MF embedding with the value of the coordinate of the causal embedding, that is,
the only one that has an impact on the reward. We observe that the MF embeddings are organized such that nearby actions in the causal
embedding space (and therefore reward) are also mapped nearby in learned embedding space. Conversely, we observe in the right subplot
that there is no such organization when coloring according to the second coordinate of the causal embedding, which is irrelevant to the
reward. This compression phenomenon additionally illustrates the discussion of Sec. 4.4 about non reward-centric embeddings.

The right subplot of Fig. 5 illustrates a failure of the MF embeddings to improve upon the causal embeddings or even IPS. Including a
context-dependent notion of similarity, as proposed by [14], might enable PC-IPS to successfully use the action structure.
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MF embeddings colored according to the 1st (left)
and 2nd (right) True embeddings coordinates
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Figure 6: MF embeddings leverage the invariances of the reward function.



Investigating Action Embeddings for More Efficient Off-Policy Evaluation

B.2 Sample size ablation
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Figure 7: Sample size ablation over the classic benchmark.
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Figure 8: Sample size ablation over the LML benchmark.
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B.3 Embedding dim ablation

Approximation quality. Action embeddings may be useful despite significant matrix factorization reconstruction error, provided they
respect reward similarity between actions [4]. In particular, embeddings capturing invariance should be extremely useful irrespective of model

Conference’17, July 2017, Washington, DC, USA

error. Finally, matrix factorization algorithms require to set an embedding dimension parameter, which influences the OPE performance
of the estimator by trading-off some bias when the embedding dimension is too small (underfitting) and variance in the opposite case
(overfitting). We push the corresponding ablations in App. B.3 (Fig. 9 and Fig. 10).
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Figure 9: Embedding dimension ablation (used by PC-IPS estimators) over the classic benchmark.
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Figure 10: Embedding dimension ablation (used by PC-IPS estimators) over the LML benchmark.
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B.4 Action space size ablation
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Figure 11: Ablation of the number of actions over the classic benchmark.
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Figure 12: Ablation of the number of actions over the LML benchmark.
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B.5 Reward slope ablation
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Figure 13: Ablation of the slope of the reward over the classic benchmark. Scale is applied uniformly for all context-action
pairs.
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Figure 14: Ablation of the slope of the reward over the classic benchmark. Scale is applied uniformly for all context-action
pairs. Bias-variance decomposition.
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C Visualizing dictionary learning embeddings

True VS matrix factorization embeddings
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Figure 15: Comparing the causal embeddings (named "True", represented as circles) with the dictionary learned ones (crosses).
Matrix factorization learns to cluster together actions leading to the same reward, recovering the true clusters. This explains its
great performance used in conjunction with the PC-IPS algorithm.



	Abstract
	1 Introduction
	2 Related works
	3 Methods
	3.1 Off-policy evaluation in bandits
	3.2 Information sharing in large action spaces

	4 Experiments
	4.1 Matrix factorization embeddings can improve PC-IPS over causal embeddings
	4.2 Benefits from flat regions of the reward
	4.3 Matrix factorization generates clusters of action embeddings
	4.4 Risks of non reward-centric embeddings

	5 Discussion and conclusions
	References
	A Evaluation procedure
	A.1 Additional methodological details
	A.2 Comparison between the classical benchmark and the ``LML'' benchmark

	B All results
	B.1 Default benchmark (10k samples, 1024 actions)
	B.2 Sample size ablation
	B.3 Embedding dim ablation
	B.4 Action space size ablation
	B.5 Reward slope ablation

	C Visualizing dictionary learning embeddings

